Acute Respiratory Distress Syndrome (ARDS)

Meg, Kelly, Ariel, and Jeannine
ARDS

- http://youtu.be/SPWAR0bqMkM
Etiology and Pathophysiology
ARDS: definition

- ARDS is characterized by the acute onset of hypoxemia and bilateral pulmonary infiltrates consistent with pulmonary edema but without evidence of left heart failure.
ARDS: description

- ARDS leads to a buildup of fluid in the air sacs. This fluid prevents enough oxygen from passing into the bloodstream.

- The fluid buildup also makes the lungs heavy and stiff, and decreases the lungs' ability to expand.

- ARDS often occurs along with the failure of other organ systems, such as the liver or the kidneys. Cigarette smoking and heavy alcohol use may be risk factors.

- The level of oxygen in the blood can stay dangerously low, even if the person receives oxygen from a breathing machine (mechanical ventilator) through a breathing tube (endotracheal tube).
Etiology

- Respiratory failure proceeds; ARDS sometimes occurs as a complication of this condition but is not a guaranteed outcome
- Causes for respiratory failure can be direct or indirect
<table>
<thead>
<tr>
<th>Direct</th>
<th>Indirect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia</td>
<td>Severe sepsis</td>
</tr>
<tr>
<td>Gastric aspiration</td>
<td>Transfusions</td>
</tr>
<tr>
<td>Drowning</td>
<td>Shock</td>
</tr>
<tr>
<td>Fat and amniotic-fluid embolism</td>
<td>Salicylate or narcotic overdose</td>
</tr>
<tr>
<td>Pulmonary confusion</td>
<td>Pancreatitis</td>
</tr>
<tr>
<td>Alveolar hemorrhage</td>
<td></td>
</tr>
<tr>
<td>Smoke and toxic gas inhalation</td>
<td></td>
</tr>
<tr>
<td>Reperfusion (pleural effusion drainage, emboleotmy)</td>
<td></td>
</tr>
<tr>
<td>Unilateral lung re-implantation</td>
<td></td>
</tr>
</tbody>
</table>
Etiology

Examples of common causes of ARDS include:
- Breathing vomit into the lungs (aspiration)
- Inhaling toxic chemicals
- Pneumonia
- Septic shock or sepsis
- Trauma
Normal Lung Function
Pathophysiology

- Three stages to ARDS
 1. Exudative Stage
 2. Fibroproliferative Stage
 3. Resolution and Recovery Stage
High Risk

- Cystic Fibrosis
- Malnourished
- Geriatric patients
- Emphysema = high risk for smokers
Prevalence

- Depends on which criteria is used, some are more stringent than others
- Estimate 150,000 cases in the US per year.
Comorbidities, Prognosis, Diagnostic Procedures
Comorbidities

- Sepsis
- Multiple Organ Failure
- Pneumothorax
 - Incidence is only 10-13%
Signs and Symptoms

- Symptoms can vary, depending on the cause

- Most common
 - Shortness of breath
 - Cough with white/pink expectoration
 - Fatigue
 - Pulmonary edema

- A few examples of others:
 - Pancreatitis: abdominal pain
 - Pneumonia: fever, cough, breathlessness
 - Initial and severe infections: chills and lightheadedness
Auscultation
- reveals abnormal breath sounds (crackling): suggest fluid in the lungs

- Often blood pressure is low

- Cyanosis
Signs and Symptoms

- Labored, rapid breathing
- Low blood pressure and organ failure
- Shortness of breath

Symptoms usually develop within 24 to 48 hours of the original injury or illness. Often, people with ARDS are so sick they are unable to complain of symptoms.
Progression

- Some patients can progress to have Fibrosing Alveolitis
 - Persistent hypoxemia
 - Increased alveolar “dead space”
 - Further decrease in ability of gas exchange
Radiology: Progression

Normal Lungs

Day 1 - Admission
Radiology: Progression

Day 2

Day 3
Prognosis

- Same APACHE II scores as those with other respiratory disorders
 - Worse gas exchange
 - Better general physiological state
- Proper fluid balance increases survival
Tests and Diagnosis

Tests used to diagnose ARDS includes:

- Severe hypoxemia
 - $\text{PaO}_2/\text{FiO}_2 < 200$
 - (FiO_2 is the fraction of inspired oxygen)
- Arterial blood gas
- Bronchoscopy
- CBC and blood chemistries
Tests and Diagnosis cont.

- Chest x-ray
- Can cause confusion
- Pneumonia, CHF, and Cardiogenic Pulmonary Edema can present themselves in a similar way
- Sputum cultures and analysis
- Test for possible infections
Prognosis

- Mortality rate at 53%
- Exact prognosis is uncertain for those with underlying chronic pulmonary disease
 - Not likely to survive
- Young, previously healthier patients can expect to survive
- Lung transplantation may be an option for some
Prognosis

- Mechanical ventilatory support reduce mortality
- Non-ventilatory adjuncts to gas exchange
 - improve oxygenation
 - do not reduce mortality
- Although death rates are falling, long term debility in survivors is considerable
ARDS survivors

- Most can receive full lung function
- May still experience:
 - Shortness of breath
 - Fatigue
 - Muscle wasting and weakness
 - Continued cough
 - Continued need for oxygen support
 - Usually go away after a year
- Dr must follow-up to monitor lungs
Medications, Treatments, and Instruments
Treatment for ARDS

- Ventilation
 - Mechanical ventilator
 - ECMO
 - Endotracheal tube
Ventilators

- Get oxygen into the lungs.
- Remove carbon dioxide from the body. (Carbon dioxide is a waste gas that can be toxic.)
- Help people breathe easier.
- Breathe for people who have lost all ability to breathe on their own.
Endotracheal tube goes through patient’s mouth and into the windpipe.

Nasogastric tube goes through patient’s nose and into the stomach.

Mechanical ventilator blows air, or air with increased oxygen, through tubes into the patient’s airways.

Air flowing to the patient passes through a humidifier, which warms and moistens the air.

Exhaled air flowing away from the patient.

Nurse periodically checks the patient.
Extracorporeal Membrane Oxygenation (ECMO)

- Takes out carbon dioxide just like our lungs do.
- For severely damaged heart and lungs (non-functional)
- Cannulation is performed by Surgeon
- Maintenance: 24/7 monitoring care during treatment by EMCO specialist
- ECMO treatment provides oxygenation until their lung function has sufficiently recovered to maintain appropriate O2 saturation.
- Extracorporeal means that the blood circulates outside of the body with the help of a machine.
- ECMO is costly and labor intensive
 - 73,979 ($116,502) over six months.
- LAST RESORT!
Endotracheal Tube

- Plastic tube used during artificial respiration
- One end of the breathing (endotracheal) tube is placed into the windpipe (trachea) through the mouth or nose.
- The other end of the tube is connected to a breathing machine (mechanical ventilator) or breathing bag (manual resuscitator).
- The breathing tube provides an airway so that air and oxygen from the breathing machine or breathing bag can be provided to the lungs.
Treatment for ARDS

- **GOAL**: provide breathing support and treat the underlying cause of ARDS.
 - This may involve medications to treat infections, reduce inflammation, and remove fluid from the lungs.

- Intensive care unit (ICU).

- A breathing machine:
 - Delivers high doses of oxygen and a continuous level of pressure called PEEP (positive end-expiratory pressure) to the damaged lungs
 - Patients often need to be deeply sedated

- Treatment continues until you are well enough to breathe on your own.

- Many family members of people with ARDS are under extreme stress.
 - Support groups
PEEP (Positive End-Expiratory Pressure)

- airway pressure is maintained above atmospheric pressure at the end of exhalation
- usually a valve, within the circuit
- PURPOSE: to increase the volume of gas remaining in the lungs at the end of expiration in order to decrease the shunting of blood through the lungs and improve gas exchange
Medications/Therapies

- Steroids
- Surfactant
- Neuromuscular blocking agents
Steroids: Glucocorticoid receptor

- Down-regulation of systemic inflammation:
 - restore homeostasis
 - decrease morbidity
 - improve survival
 - significantly enhanced with prolonged low-to-moderate dose glucocorticoid treatment.
 - Improvement in pulmonary and extrapulmonary physiology

- Improved patient-centered outcomes.
 - mechanical ventilation-free days (average 6.58 days)
 - ICU-free days (average 7.02 days)
 - by day 28 is superior to any investigated intervention in ARDS.
 - significant risk reduction in mortality
Surfactant

- Surfactant reduces the surface tension of fluid in the lungs and helps make the small air sacs in the lungs (alveoli) more stable. This keeps them from collapsing when an individual exhales.

- Surfactant Therapy:
 - Improve gas exchange
 - Increase lung function
 - Improvement in ventilation efficiency index
 - Nearly normalizes surfactant phospholipid and protein content
 - Alveolar surface activity partially improved
Neuromuscular blocking agents

- Decreases inflammatory response by causing paralysis
- Lower 90-day mortality
- Decreased morbidity
 - Increased ventilator-free days
 - Increased ICU-free days
 - Increased organ failure-free days
- Possible side effects:
 - Muscle weakness
MNT & Nutrition Support
ARDS Basics

- Acute respiratory distress syndrome is a common complication of critical illness

- Nutrition needs vary
 - Underlying disease process
 - Prior nutrition status
 - Age

- Body composition fluctuation is the hallmark nutrition assessment indicator for RF.
ARDS Basics

- Many become underweight- Anthropometric measurements are critical.

- Other factors to assess:
 - Immunocompetence
 - Chronic mouth breathing
 - Aerophagia
 - Dyspnea
 - Exercise tolerance
 - Depression
Prevention

- Treatable infections (sepsis, pneumonia)
- Abdominal infections (antimicrobial agents or surgery)
- Prevent nosocomial infections
- Enteral feeding is preferred
- Prevention of GI bleeding and thromboembolism is important
Goals of MNT

- Provide adequate energy and protein via EN
- Prevent weight loss, even in overweight PTs
- Maintain LBM
- Restore respiratory muscle mass and strength
- Maintain fluid balance
- Improve resistance to infection
- Facilitate weaning of O2 support & mechanical ventilation: provide energy substrates w/o exceeding capacity of the respiratory system to clear CO2
Oxepa

- Abbott product features:
 - 1.5 Cal/mL
 - Unique oil blend (EPA and GLA)
 - Elevated Vit C, Vit E, and beta-carotene
 - Gluten-free, okay for lactose intolerance, and Halal

- Benefits:
 - Include easier weaning off of ventilator, and decreased length of stay in hospital
<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Study groups</th>
<th>Mortality</th>
<th>LOS days, mean ± SD</th>
<th>Vent days, mean ± SD</th>
<th>New organ dysfunction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gadek et al. [45]</td>
<td>ARDS ICU (n = 146)</td>
<td>Oxepa</td>
<td>11/70 (16%) ICU</td>
<td>11.0 ± 0.9 ICU</td>
<td>9.6 ± 0.9</td>
<td>7/70 (10%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stand EN</td>
<td>19/76 (25%) ICU</td>
<td>14.8 ± 1.3 ICU</td>
<td>13.2 ± 1.4</td>
<td>19/76 (25%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oxepa</td>
<td></td>
<td>27.9 ± 2.1 Hosp</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stand EN</td>
<td></td>
<td>31.1 ± 2.4 Hosp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singer et al. [47]</td>
<td>ARDS and ALI (n = 100)</td>
<td>Oxepa</td>
<td>14/46 (30%) at 28 d<sup>a</sup></td>
<td>13.5 ± 11.8 ICU</td>
<td>12.1 ± 11.3</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stand EN</td>
<td>26/49 (53%) at 28 d</td>
<td>15.6 ± 11.8 ICU</td>
<td>14.7 ± 12.0</td>
<td></td>
</tr>
<tr>
<td>Pontes-Arruda et al. [48]</td>
<td>Severe sepsis ICU (n = 165)</td>
<td>Oxepa</td>
<td>26/83 (31%) at 28 d<sup>a</sup></td>
<td>17.2 ± 4.9 ICU</td>
<td>14.6 ± 4.3<sup>a</sup></td>
<td>32/83 (39%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stand EN</td>
<td>38/82 (46%) at 28 d</td>
<td>23.4 ± 3.5 ICU</td>
<td>22.2 ± 5.1</td>
<td>66/82 (80%)</td>
</tr>
</tbody>
</table>

SD = standard deviation; NR = not reported; ICU = intensive care unit; LOS = length of stay; d = day(s); P ≤ 0.05.
Nutrition Assessment

- Interpretations may be confounded by fluid imbalances, meds, and ventilator support.
- PTs should receive 1.5 to 2 g protein/kg
- Fluid requirements: Normal, unless underlying disease requires a restriction (2 L/day)
 - PT is deficient in fluid if:
 - Hypernatremia, elevated BUN, decreased skin turgor, or dry mucous membranes
 - PT may have fluid overload if:
 - Hyponatremia, edema

Energy

- Elevated needs- due to hypercatabolism and hypermetabolism
 - Give enough to prevent the use of body’s own protein and fat reserves.
 - Avoid overfeeding
 - Start with 1.2 – 1.4 x REE
 - Indirect calorimetry
Macronutrients

- Negative N balance
 - Protein
 - (Notice that EN or TPN supplied protein or AA do affect the RQ)

- HIGH fat, LOW carb
 - Protein 1.5-2 g/kg of dry body weight
 - Non-protein: Fat and Carbohydrate
 - For the obese PT (60-70% of target; 2-2.5 g/kg protein)
 - Fat: Borage Oil?
Vitamins & Minerals

- Supply at least DRI level plus repletion
 - Enough for anabolism, wound healing, and immunity

- Antioxidants

- Monitor mineral balance - VERY closely
 - Why?
Refeeding Syndrome

- Low serum levels of K, P, Mg

- Review: There is an increased demand on amounts of glucose, K, P, and Mg due to new tissue proliferation. If intracellular electrolytes are insufficient to keep up with tissue growth- low serum levels manifest. Carbohydrate metabolism by cells also causes electrolyte shift to intracellular space as glucose moves into cells for oxidation.
Refeeding cont.

- Rapid infusion of carbohydrates stimulates insulin release → Which reduces salt and water excretion.
- AND also increases the chance of cardiac and pulmonary complications from fluid overload
- In early phase of refeeding (Starting TPN… and having no form of nutrition for a significant period should be monitored for electrolyte fluctuation and fluid overload)
Nutrient prescriptions

- Moderate in carbohydrates
- Supplement with K, P, and Mg
 - Minerals function as electrolytes
 - May cause fluid imbalances and the occurrence of respiratory acidosis or alkalosis
 - Side effect of meds may be: K, Ca, and Mg lost in the urine.
Monitoring the PT on EN

- P. 516 Box 20-3
- Weight (at least 3 x/wk)
- S/S of edema (daily)
- S/S of dehydration (daily)
- Ins and outs (daily)
- Adequacy of enteral intake (at least 2 x/wk)
- Abdominal distention and discomfort
- Serum electrolytes, BUN, creatinine (2-3 x/wk)
- Serum glucose, Ca, Mg, P (weekly or as ordered)
- Stool output and consistency (daily)
Feeding Strategies

- NON intubated PTs: Most will be able to meet most or all of nutrition needs by mouth.

- Tips:
 - Small portions
 - Favorite foods

- Give adequate O2 supply

- Inadequate O2 → PT may complain of anorexia, early satiety, malaise, bloating, constipation or diarrhea
Feeding Strategies

- Intubated PTs: EN or TPN
 - Appropriate enteral feeding → better clinical outcomes such as decreased duration of mechanical ventilation
 - Specially formulated pulmonary proprietary products
 - GI route is preferred
 - Concerns: Aspiration and bacterial overgrowth.
Procedures that minimize aspiration

- Continuous vs bolus feedings
- Tube placement
- Use of small-bore nasogastric feeding tubes
- Chest elevation to at least 45 degrees
- Frequent evaluation for gastric residuals
- Endotracheal tube cuff inflation
Case Study

- DH
- Age 65
- Male, smoker
- Chief Complaint: difficulty breathing during yard work
- Hx: COPD, emphysema, chronic tobacco use, total dental extraction
- Dx: Acute Respiratory Distress, COPD, peripheral vascular disease with intermittent claudication
- Hospital course: chest tube inserted into left thorax for drainage. Resuscitation bag was used to ventilate DH with fresh O_2. Pt was intubated and then ventilated with 15 breaths/min. Enteral feedings initiated. Pt started on Procalamine due to high residuals. Respiratory status was worse on day 5, but increased after that.
Nutritional Assessment

- **Anthropometric**
 - Ht 5'4"
 - Wt 122lbs (UBW 135lbs)
 - BMI 21
 - 90% UBW
 - 93% IBW

- **Biochemical**
 - Everything mainly WNL
 - Low labs for Transferrin, Uric Acid, HDL
 - High for LDH, LDL

- **Clinical**
 - Dyspnea
 - Pitting edema in extremities
 - Harsh breath sounds over right chest during inhalation
 - Absent sounds on left chest
Nutritional Assessment

- Dietary Assessment
 - Usual Intake:
 - Breakfast: Egg, hot cereal, bread or muffin, hot tea (with milk and sugar)
 - Lunch: soup, sandwich, hot tea (with milk and sugar)
 - Dinner: small amount of meat, rice, 2-3 kinds of vegetables, hot tea (with milk and sugar)

- 24 hour recall
Nutritional Assessment

- Estimated calorie needs
 - Harris Benedict: 1190
 - Add stress factor of 1.2
 - 1450

- Protein Needs:
 - 1.5 – 2.0 g/kg
 - = 82.5 – 110 grams
PES Statement

- Inadequate Oral Intake related to decreased appetite as evidenced by dyspnea and significant weight loss

- Intervention:
 - Put on enteral feeding due to a ventilator tube going into his lungs.
 - Oxepa Enteral Feeding
Nutrition Diagnosis

- Monitoring and Evaluation
 - I/Os
 - Biochemical labs
 - Stop weight loss
 - Do not overfeed
References

References

References

References

